

Kolloquium für Fortgeschrittene im Straßenwesen am 09.12.2004 in Karlsruhe

Dipl.-Ing. Wolf-Henrik von Loeben

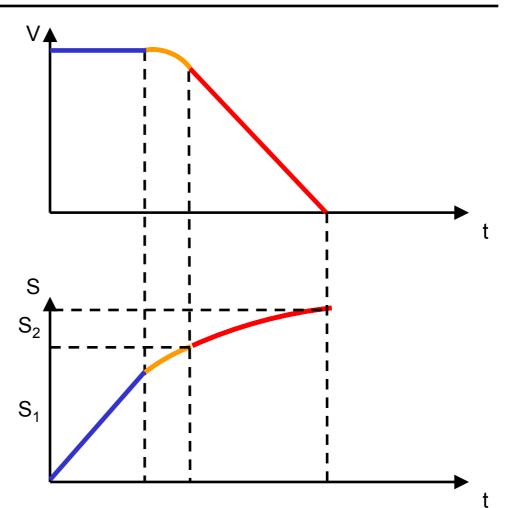
Sicherheitsaspekte bei der Sichtweitenbemessung

Gliederung

- Regelwerk
- Ermittlung der möglichen Bremsverzögerungen
- Haltesichtweite und Kuppenmindesthalbmesser
- Vorschlag für eine langfristige Umsetzung der Ergebnisse
- Schlussfolgerungen und Empfehlungen
- Ausblick

Regelwerk Haltesichtweite

Weg während der Reaktionsund Auswirkdauer:


$$S_1 = \frac{V_{85}}{3,6} \cdot t_R$$

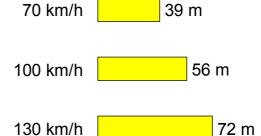
Bremsweg:

$$S_{2} = \frac{1}{3.6 \cdot g} \cdot \int_{V_{1}}^{V_{2}} \frac{V}{f_{T}(V) + \frac{s}{100} + \frac{W_{L}}{G}}$$

Anhalteweg:

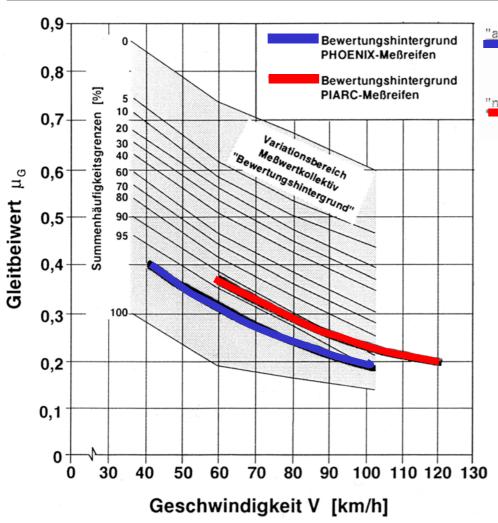
$$S_h = S_1 + S_2$$

= Haltesichtweite



Regelwerk Reaktionsweg

RAS-L (1995):
$$t_R[s] = 2s$$


$$S_1 = \frac{V_{85}}{3.6} \cdot t_R$$

Regelwerk tangentialer Kraftschluss

"alter Bewertungshintergrund"
$$\mu_G = f_{Tmax} = 0.214 \cdot \left(\frac{V}{100}\right)^2 \cdot 0.640 \cdot \left(\frac{V}{100}\right) + 0.615$$

"neuer Bewertungshintergrund"
$$\mu_G = f_{Tmax} = 0.241 \cdot \left(\frac{V}{100}\right)^2 \cdot 0.721 \cdot \left(\frac{V}{100}\right) + 0.708$$

$$S_{2} = \frac{1}{3.6 \cdot g} \cdot \int_{1}^{V_{2}} \frac{V}{f_{T}(V) + \frac{s}{100} + \frac{W_{L}}{G}}$$

Anlass

- Das Regelwerk enthält den Stand der Technik von 1970 (1995 aktualisiert)
- Anstehende Neufassung der Richtlinie für den Entwurf von Landstraßen (RAL)
- Abgeschlossenes Forschungsprojekt mit überraschenden Aussagen zur Bremsverzögerung von PKW ohne Antiblockiersystem

Ermittlung der möglichen Bremsverzögerungen

FE - Vorhaben:

Mögliche Bremsverzögerungen in Abhängigkeit von der Griffigkeit

Im Auftrag des
Bundesministeriums für Verkehr-, Bau- und Wohnungswesen (BMVBW)
betreut durch die
Bundesanstalt für Straßenwesen (BASt)

Ermittlung der möglichen Bremsverzögerungen - Methodik -

Resultate

- Mögliche Bremsverzögerungen
- Abschätzung des Nutzungsgrades für den Straßennutzer
- Erforderliche Haltesichtweite und Kuppenhalbmesser

Durchführen von Bremsversuchen mit aktuellen Fahrzeugen

- Vorversuche zu Ermittlung der relevanten Parameter
- Hauptversuche mit eingeschränkter Parametervariation

Ermittlung der möglichen Bremsverzögerungen - Versuchskombinationen -

Fahrzeug			Fahrzeug A (Kleinwagen)				Fahrzeug B (untere Mittel- klasse)			Fahrzeug C (Mittelklasse)		
	ABS	ja			neir	1	ja			ja		
Reifentyp / Profilhöhe	V[km/h]	70	100	130	70	100	70	100	130	70	100	130
P3	2 mm	Х	Х	х	Х	Х						
P3	5 mm	Х	Х	Х								
P3	8 mm	х	Х	Х	Х	х						
ВВ	7 mm	х	Х	Х								
P6	2 mm						Х	Х	Х	Х	Х	Х
P6	5 mm						Х	х	Х	х	х	х
P6	8 mm						Х	Х	х	Х	Х	Х
P6H	5 mm									Х	х	х
M+S	7 mm						Х	х	х			
MXH	5 mm						Х	х	Х			
MXH	7 mm						Х	х	х			
SP	7 mm									Х	х	х
SPE	7 mm									х	Х	х

Wasserfilmdicken: 0,3 mm

0,7 mm

1,0 mm

Ermittlung der möglichen Bremsverzögerungen

- Versuchsanordnung -

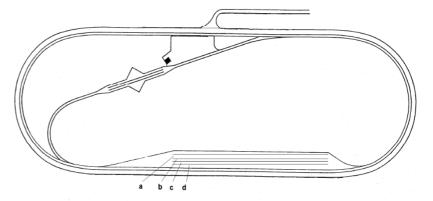
Ermittlung der möglichen Bremsverzögerungen - Messprogramm -

Fahrzeug	Fahrzeug A (Kleinwagen)						Fahrzeug B (untere Mittelklasse)				
ABS	ABS ja		nein			ja					
Reifen und Profilhöhe	70	100	130	70	100	130	70	100	130		
"Guter" Reifen 2 mm	Х	х	х	-	-	-	х	х	х		
"Guter" Reifen 5 mm	х	х	х	х	х	-	Х	Х	х		
"Mangelhafter" Reifen 2 mm	X/Z	X/Z	X/Z	x	X/Z	-	х	X	X/Z		

Wasserfilmdicke: 1,0 mm

Z = mit **Z**uladung

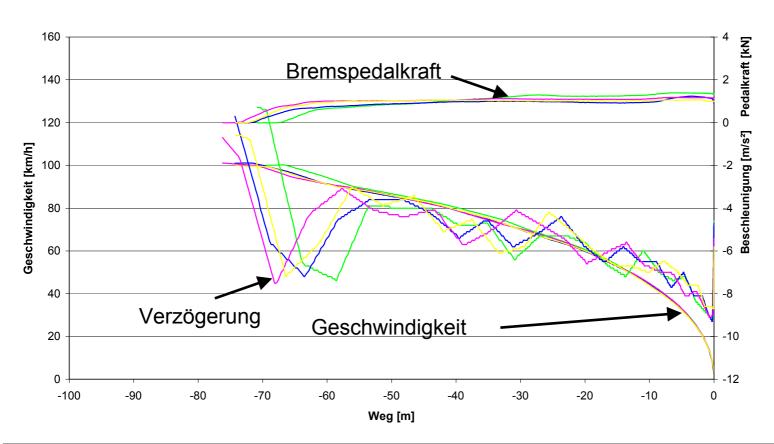
durchzuführen auf 10 Strecken



Ermittlung der möglichen Bremsverzögerungen - Bremsversuche -

Bremsversuche auf abgesperrten Bundesstraßen und einer Teststrecke

Ermittlung der möglichen Bremsverzögerungen - Messergebnisse -



Variante59

Fahrzeug: Kleinwagen Reifen: P3

Reifen: P3 Profiltiefe: 8 mm Wasserfilmdicke: 1 mm Geschwindigkeit: 100 km/h

ohne ABS

Ermittlung der möglichen Bremsverzögerungen

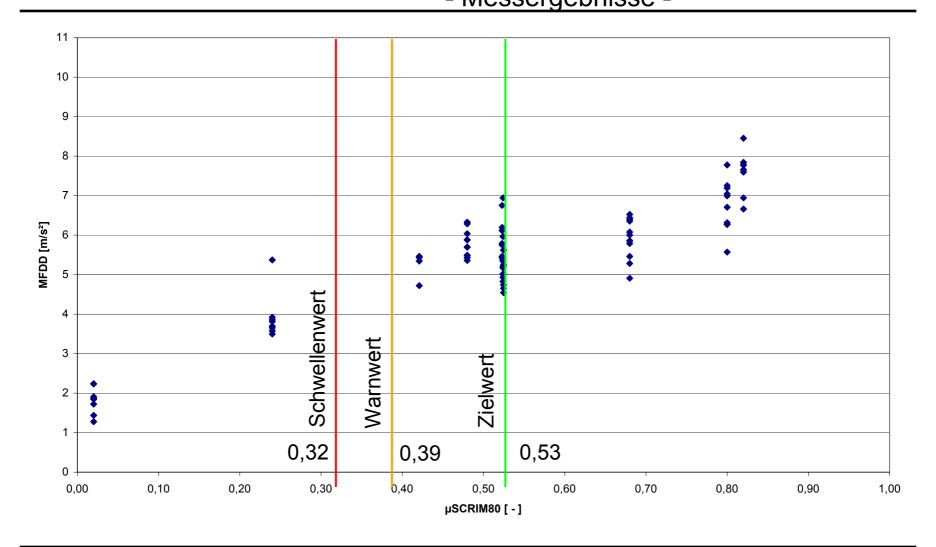


MFDD =
$$\frac{v_{01}^2 - v_{08}^2}{2 \cdot (s_{01} - s_{08})}$$

$$v_{01} = 0.1 \bullet v_0 \text{ [m/s]}$$

 $v_{08} = 0.8 \bullet v_0 \text{ [m/s]}$

 s_{01} = Weg zwischen v_0 und v_{01} [m]


 s_{08} = Weg zwischen v_0 und v_{08} [m]

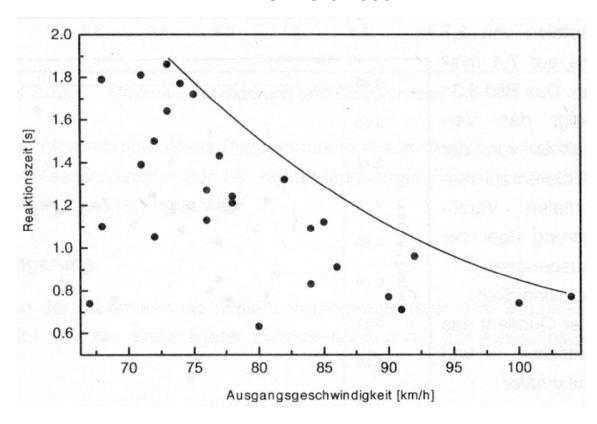
Ermittlung der möglichen Bremsverzögerungen - Messergebnisse -

Ermittlung der möglichen Bremsverzögerungen

- Messergebnisse -

V ₈₅ [km/h]	Aus- Mittlere gangs- Voll- Verzögerung a [m/s²] nach RAS- L (1995)			verzögerung* (µscRIM60 = 0,37)	Mittlere Vollverzögerung* MFDD [m/s²] (µ _{SCRIM80} = 0,32)				
			ohne ABS	mit ABS	ohne ABS mit ABS				
70	3,15	4,20	4,50	6,00	4,30	5,70			
100	2,24	3,35	3,80	6,00	3,70	5,80			
130	1,75	2,81	3,30**	5,90	3,20**	5,70			

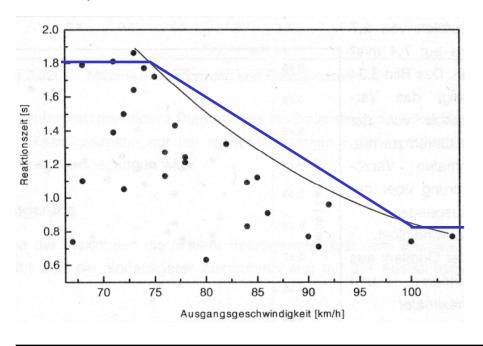
^{*}Mittelwerte


^{**}extrapolierter Wert

Ermittlung der möglichen Bremsverzögerungen - Reaktionszeit -

Bernhard 1999

Ermittlung der möglichen Bremsverzögerungen



- Reaktionsweg -

Reaktionszeit:

$$t_{R}[s] = \begin{cases} 1,8 & V \le 75 \text{ km/h} \\ 4,8 - \frac{V}{25} & 75 \text{ km/h} < V < 100 \text{ km/h} \\ 0,8 & V \ge 100 \text{ km/h} \end{cases}$$

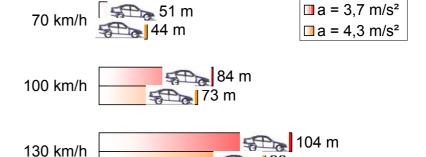
+ 0,2 s Auswirkdauer

70 km/h 39 m

100 km/h 422 28 m

130 km/h 35 m

Ermittlung der möglichen Bremsverzögerungen - Bremsweg -

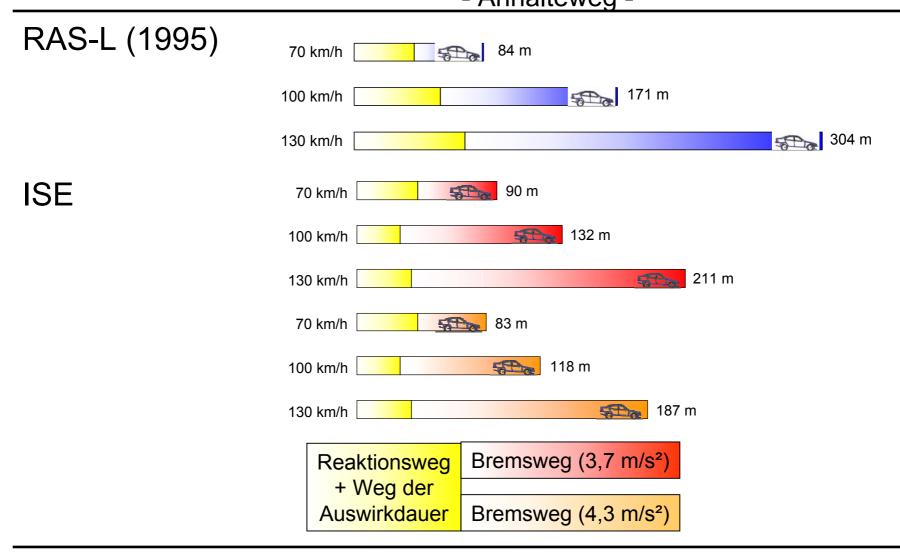

RAS-L

$$S_{2} = \frac{1}{3.6 \cdot g} \cdot \int_{V_{1}}^{V_{2}} \frac{V}{f_{T}(V) + \frac{s}{100} + \frac{W_{L}}{G}}$$

232 m

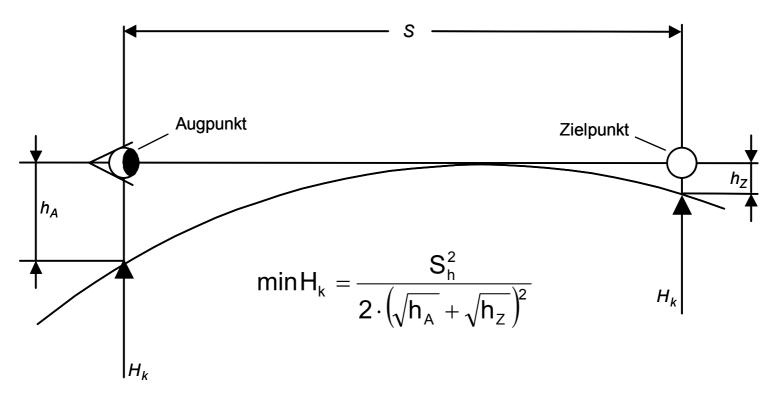
ISE

$$S_2 = \frac{(\frac{V}{3.6})^2}{2a}$$

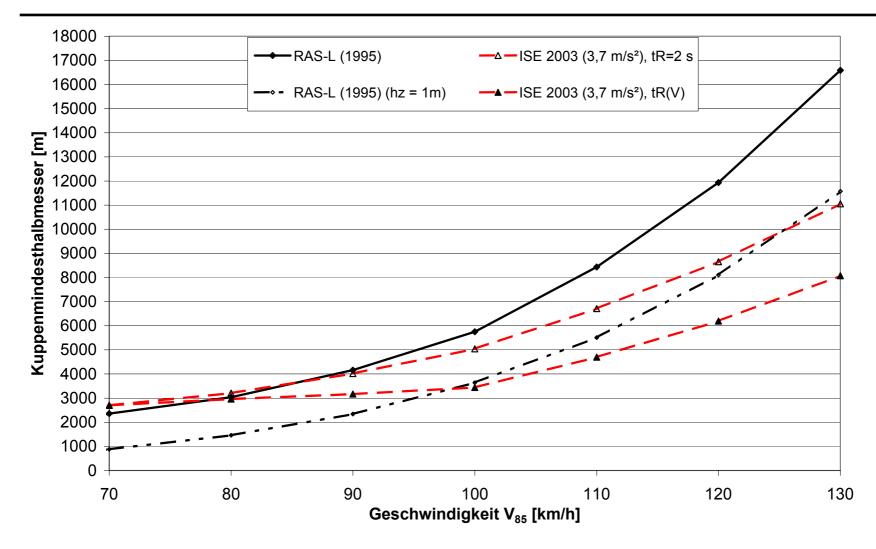


90 m

Ermittlung der möglichen Bremsverzögerungen - Anhalteweg -

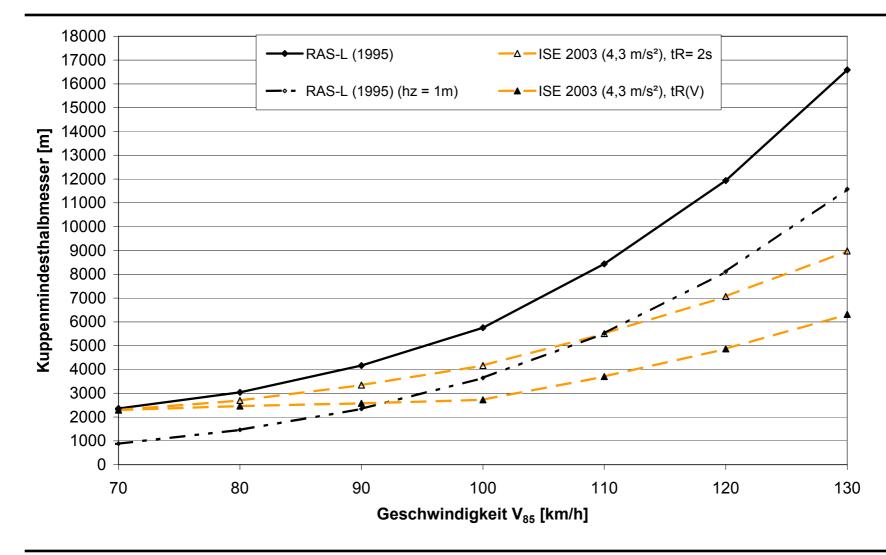


Haltesichtweite und Kuppenmindesthalbmesser

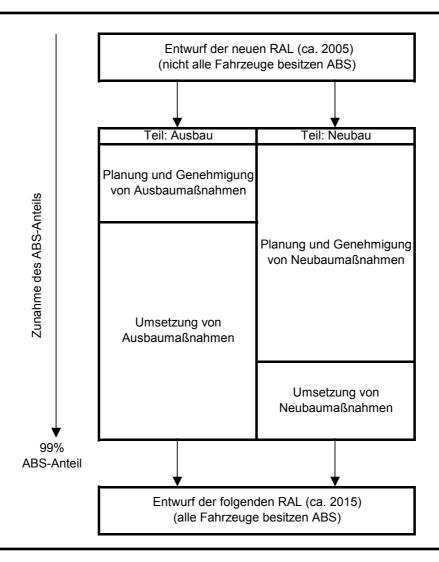


Zusammenhang zwischen Kuppenmindesthalbmesser, Aug- und Zielpunkthöhe sowie Sichtweite (RAS-L 1995)

Haltesichtweite und Kuppenmindesthalbmesser



Haltesichtweite und Kuppenmindesthalbmesser



Umsetzung der Ergebnisse

Schlussfolgerungen und Empfehlungen

- Kuppenhalbmesser könnten aus technischer Sicht deutlich kleiner werden und damit kostengünstigere Trassierungsmöglichkeiten erlauben
- Die nach bisherigen Richtlinien trassierten Strecken bieten hinsichtlich der vorhandenen Haltesichtweiten ein hohes Sicherheitspotenzial
- Die Auswirkungen kleiner Kuppen auf das Fahrverhalten sind nicht bekannt
- Extreme Parameterkombinationen sollten vermieden werden
- Der Einfluss der räumlichen Linienführung auf das Fahrverhalten ist bisher bekannt

Ausblick

- Die neuen Richtlinien (RAL) werden durch die erzielten Ergebnisse hinsichtlich der Haltesichtweiten zumindest unter technischen Gesichtspunkten abgesichert
- Weiteren Aufschluss darüber, welche Auswirkungen verkürzte Haltesichtweiten haben, werden laufende Untersuchungen zu einer Orientierungssichtweite geben

Universität Karlsruhe (TH)
Institut für Straßenund Eisenbahnwesen

