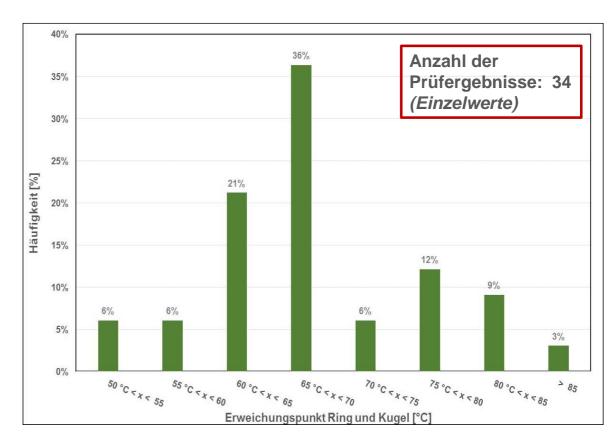


Einsatz von Rejuvenatoren bei der Asphaltherstellung

Matthias Staschkiewicz, Lehrstuhl für Verkehrswegebau an der Ruhr-Universität Bochum Nina Nytus, Lehrstuhl für Verkehrswegebau an der Ruhr-Universität Bochum

Vortragsgliederung

- Einleitung und Motivation
- Untersuchungen beim Einsatz von Rejuvenatoren bei der Asphaltherstellung
 - Asphaltgranulat
 - Untersuchungen zur Wirksamkeit auf Bitumenebene
 - Untersuchungen zur Wirksamkeit auf Asphaltebene
- Praxiserprobungen
- Fazit und Ausblick


Erweichungspunkt Ring und Kugel als Bezugsgröße

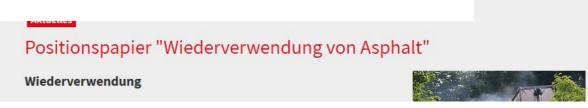
TL AG-StB 09/12:

" 4.3.2.1 Erweichungspunkt Ring und Kugel

... Als Ergebnis ist der Mittelwert der Einzelwerte des Erweichungspunktes Ring und Kugel anzugeben. Der Mittelwert darf 70 °C nicht überschreiten. Die Einzelwerte für den Erweichungspunkt Ring und Kugel dürfen nicht größer als 77 °C sein.

Für Bindemittel mit größerem Mittelwert oder größeren Einzelwerten kann die Eignung durch gesonderten Nachweis im Rahmen der Erstprüfung des unter Einsatz dieses Asphaltgranulates herzustellenden Asphaltmischgutes erbracht werden."

Positionspapier DAV



LOGIN MITGLIEDERBEREICH

SITE MAP

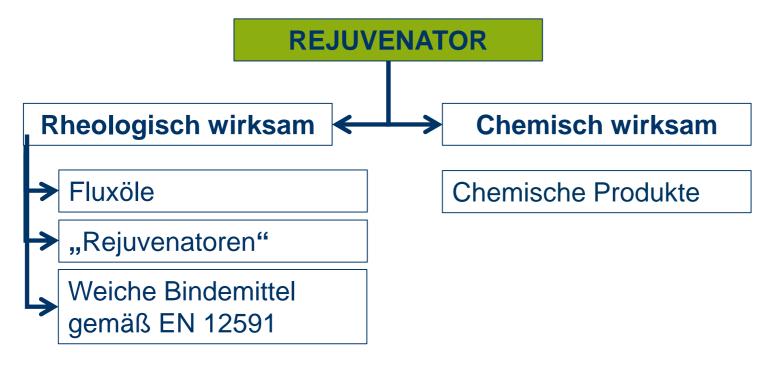
- Die Zugabe von weicherem Bitumen 160/220 sollte künftig auch für die Herstellung von Asphalttragschichtmischgut bei Einsatz von Asphaltgranulat ermöglicht werden, wie es beispielsweise schon in Hamburg, Berlin oder Baden-Württemberg praktiziert wird,
- der doppelte Sortensprung zwischen Zugabebindemittel und resultierender Bindemittelsorte sollte zukünftig bei der Asphaltmischgutherstellung für Asphalttragschichten unter Zugabe von Asphaltgranulat möglich sein. Dies wird so zum Beispiel schon in den Bundesländern Hamburg, Berlin und Rheinland-Pfalz umgesetzt,

Technik Umwelt

Oualität

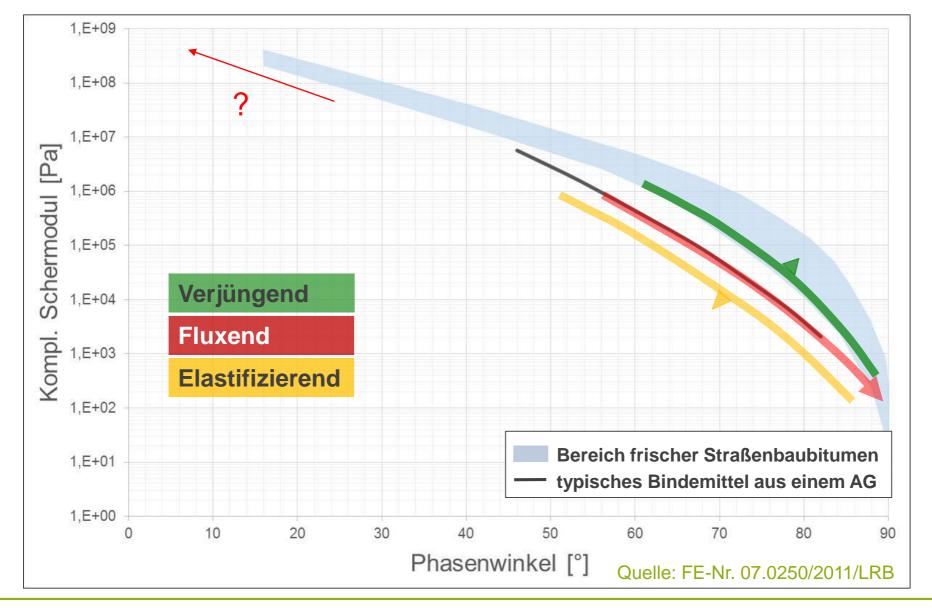
Termine Gestaltung

Asphaltproduktion 2018


- die Mitverwendung von Asphaltgranulat bei der Herstellung von Splittmastixasphalt sollte ermöglicht werden, da sie in der geltenden DIN EN 13108-5 ebenfalls vorgesehen ist und damit bereits heute langjährige positive Erfahrungen in einigen Bundesländern, z. B. Hamburg, vorliegen; besonders geeignet sind hierzu Asphaltgranulate aus Offenporigen Asphalten sowie Splittmastixasphalt,
- durch den Einsatz geeignet r Rejuvenatoren lann das gealterte Bindemittel im Asphaltgranulat verjüngt werden, sodass höhere Zugabeanteile an Asphaltgranulat möglich sind. Ein entsprechendes Hinweispapier wird derzeit in der Forschungsgesellschaft für Straßen- und Verkehrswesen e. V. (FGSV) erarbeitet.

Rejuvenatoren, die Lösung?

Einteilung der Additive in verschiedene Gruppen


→ Ergänzung der maltenen Phase im Bitumen

→ Aufspaltung der aus oxidativer Reaktion entstandenen Verbindungen

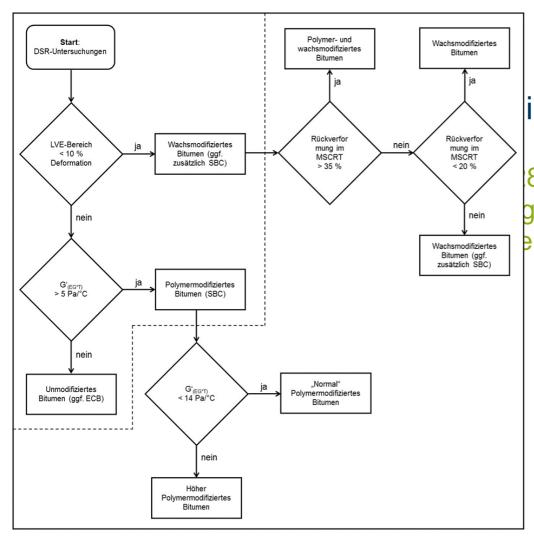
Bisherige Erkenntnisse zur typischen Wirkungen der Rejuvenatoren im Black-Diagramm

Untersuchung des Asphaltgranulates

- Charakterisierung des AG (KGV, Bindemittelgehalt, PEN, RuK)
- Rückgewinnung des Bindemittels zur Identifizierung (neuer Ansatz nach FE-Nr. 07.0286/2016/EGB)
- T-Sweeps vor und nach Alterung (RTFOT und PAV) zur Bestimmung der Äquisteifigkeitstemperatur (T(G*=15 kPa) und des zugehörigen Phasenwinkels

Untersuchung des Asphaltgranulates

- Welche Bindemittelart liegt im Asphaltgranulat vor?
- → Neuer Ansatz nach FE-Nr. 07.0286/2016/EGB "Entwicklung einer Prüfsystematik zur Identifizierung der Bitumenart und der verwendeten Modifizierungsmittel in einem Ausbauasphalt"

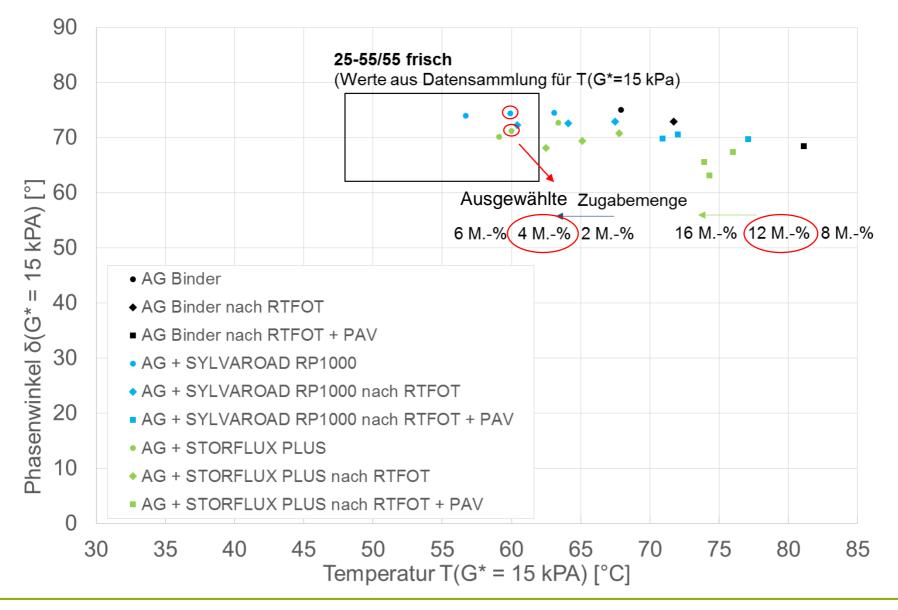


Quelle: Gehrke und Weigel, Straße und Autobahn 9/2019

Untersuchung des Asphaltgranulates

	P						
Probe	Modifizie-	Bewertung					
	rung	EP RuK	DSR	FTIR	DSC		
BK 1	unmodifiziert	unmodifiziert	unmodifiziert	unmodifiziert	-		
BK 2	unmodifiziert	unmodifiziert	unmodifiziert	unmodifiziert	-		
BK P1	PmB	unmodifiziert PmB		PmB	-		
BK P2	PmB	unmodifiziert	PmB	PmB	-		
BK P3	PmB	unmodifiziert	PmB	PmB	-		
BK P4	PmB	PmB	PmB	PmB	-		
BK P5	PmB H	WmB	PmB	PmB H	-		
BK W1	WmB	unmodifiziert	unmodifiziert	unmodifiziert	unmodifiziert		
BK W2	WmB	WmB	WmB	WmB	WmB		
BK W3	WmB	WmB	WmB	WmB	WmB		
BK W4	WmB	WmB	WmB	WmB	WmB		
BK W5	WmB	unmodifiziert	WmB	WmB	WmB		
BK W6	WmB	WmB	WmB	WmB	WmB		
BK G1	GmB	unmodifiziert	unmodifiziert	unmodifiziert	-		
BK G2	GmB	unmodifiziert	PmB	PmB	-		
BK PW1	PWmB	WmB	(PWmB)	PWmB	(WmB)		
BK PW2	PWmB	PWmB unmodifiziert WmB		PWmB (WmB			
grün	korrekt identifiziert						
gelb	entspricht nicht den ursprünglichen Informationen – aber korrekt identifiziert						
blau	nicht exakt identifiziert						
rot	falsch identifizie	ert					
weiß	nicht bewertet						

Quelle: Gehrke und Weigel, Straße und Autobahn 9/2019


Nachweis der Wirksamkeit auf Bitumenebene

- Zugabe von i.d.R. drei verschiedenen Mengen des jeweiligen Rejuvenators zum aus AG rückgewonnenen Bindemittel und Bestimmung der Äquisteifigkeitstemperatur (T(G*=15 kPa) und des zugehörigen Phasenwinkels
- → Angestrebter Bereich des jeweiligen Frischbindemittels (Erfahrungswerte aus dem FE 29.0327/2013/BASt)
- Bestimmung der Äquisteifigkeitstemperatur (T(G*=15 kPa) und des zugehörigen Phasenwinkels der ausgewählten Zugabemenge auch nach Alterung mittels RTFOT und PAV

Nachweis der Wirksamkeit auf Bitumenebene

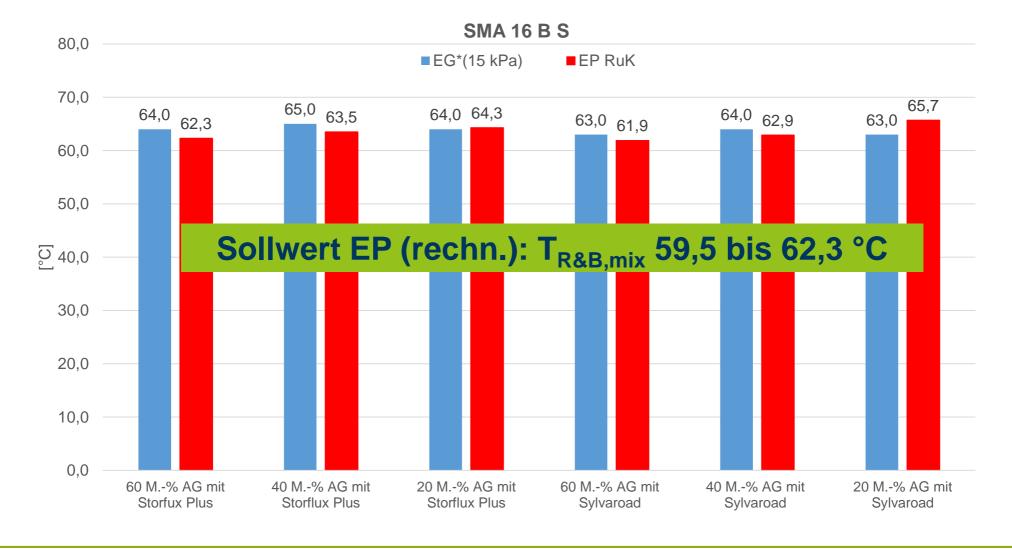
Nachweis der Wirksamkeit auf Asphaltebene

- Herstellung der Asphaltgemische und Rückgewinnung des Bindemittels zur Bestimmung der Äquisteifigkeitstemperatur (T(G*=15 kPa) und des zugehörigen Phasenwinkels
- → Angestrebter Bereich des jeweiligen Frischbindemittels unter Berücksichtigung eines Einflusses aus Kurzzeitalterung (Erfahrungswerte aus dem FE 29.0327/2013/BASt)
- Ermittlung der Asphaltkennwerte sowie der Performance-

Eigenschaften

Spaltzug-Schwellversuch gemäß AL Sp-Asphalt 09

Druck-Schwellversuch gemäß TP Asphalt-StB, Teil 25 B1


Wasserempfindlichkeit von Asphalt-Probekörpern gemäß TP Asphalt-StB, Teil 12

Einaxiale Zug- und Abkühlversuche gemäß TP Asphalt-StB, Teil 46 A

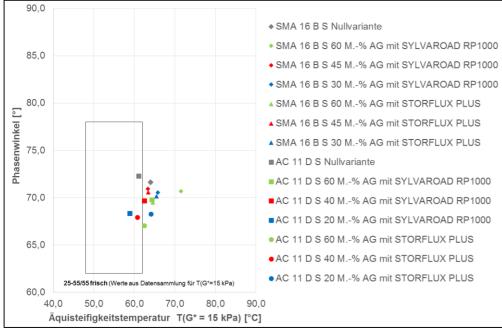
Nachweis der Wirksamkeit auf Asphaltebene

Praxiserprobungen

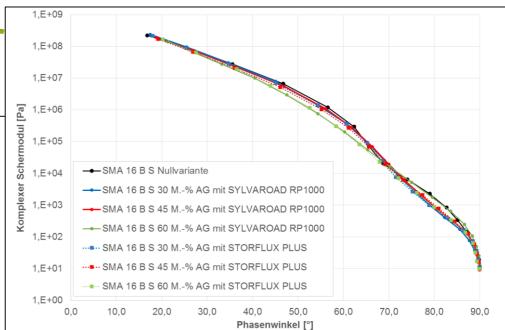
	Hamburg	Wassenberg	B37	(LBM)
Mischgutart/ - sorte	SMA 8 S	AC 22 T N	AC 11 D N	SMA 16 B S
AG-Anteil bei Referenz/ bei Varianten mit Rejuvenatoren	t 25 M% AG / 50 M% AG / 70 M% AG		0 M% AG/ 20, 40 und 60 M% AG	0 M% AG/ 30, 45 und 60 M% AG
Rejuvenator	R.1, R.3 und R.8	SYLVAROAD RP1000 (Zwei Zugabemengen)	SYLVAROAD RP1000 STORFLUX PLUS	
Zugabeart	Über die Bitumenwaage	Aufgesprüht auf das AG	Über die Bitumenwaage	
Veröffentlicht	Noch nicht veröffentlicht FE 07.0250/2011/LRB	Asphalt 2/2018	Straße und Autobahn 5/2018 und 6/2018	

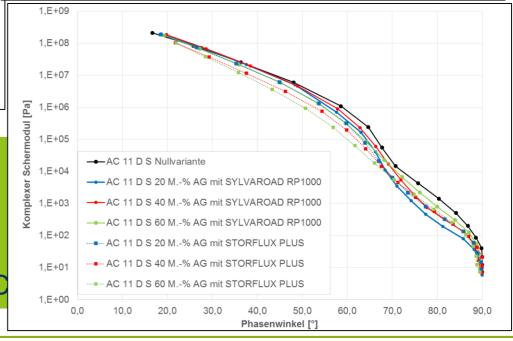
Praxiserprobungen

	Hamburg	Wassenberg	
Mischgutart/ - sorte	SMA 8 S	AC 22 T N	
AG-Anteil bei Referenz/ bei Varianten mit Rejuvenatoren	25 M% AG / 50 M% AG	50 M% AG / 70 M% AG	
Rejuvenator	R.1, R.3 und R.8	SYLVAROAD RP1000 (Zwei Zugabemenger	
Zugabeart	Über die Bitumenwaage	Aufgesprüht au das AG	
Veröffentlicht Veröffentlicht FE 07.0250/2011/LRB		Asphalt 2/2018	Straße und Autobahn 5/2018 und 6/2018


Praxiserprobung B 37

Praxiserpr

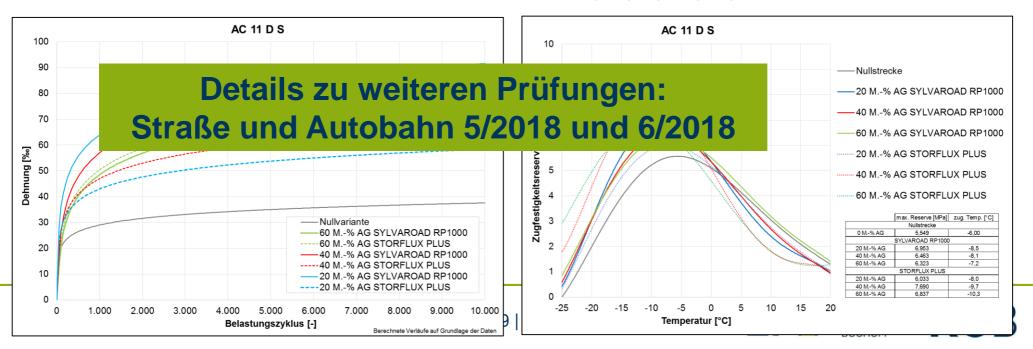




EP: SMA 16 B S: 63,0 bis 64,0 °C

KP: SMA 16 B S: 63,3 bis 65,8 °C

(Ausreißer 71,5°C



Praxiserprobungen

Verformung AC 11 D S

		Nullvariante	SYLVAROAD RP1000			STORFLUX PLUS		
Zugabeanteil AG	[M%]	0	20	40	60	20	40	60
Anzahl Belastungs- zyklen	[-]	10.000	124	859	491	642	550	418
ε _n	[%]	37,6	40	40	40	40	40	40
٤*	[‰*10 ⁻⁴ /n]	0,2	58,7	25,8	14,7	6,3	12,2	16,8
ε _{10.000} *		0,2	0,7	0,8	0,7	0,4	0,5	0,7

Kälteverhalten

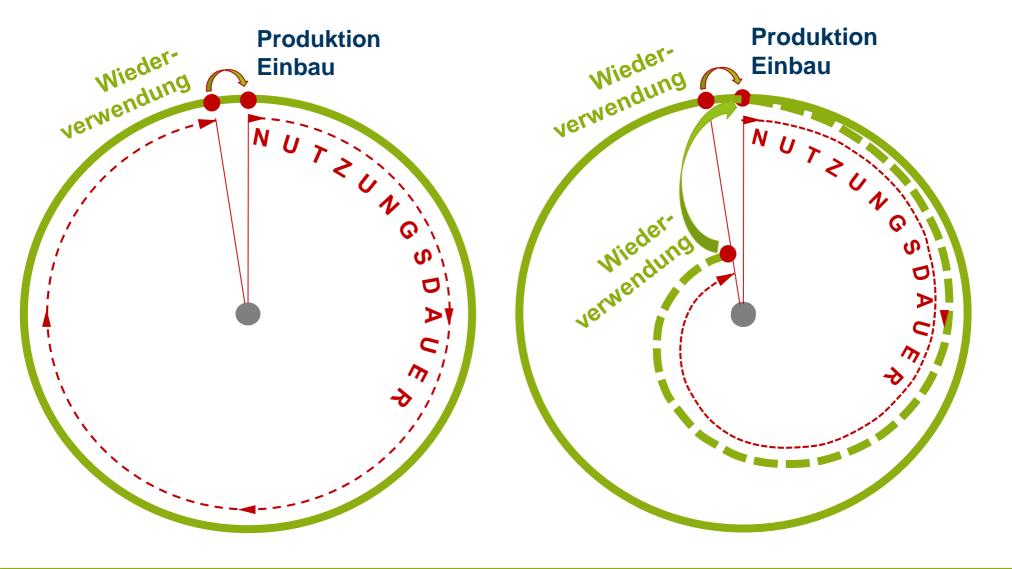
Fazit und Ausblick

<u>Mittelfristiges Ziel</u>: Festlegung eines Nachweises zur Eignungsfeststellung komplexerer Wiederverwendungskonzepte (mit Rejuvenatoren),

→ Änderungen im technischen Regelwerk!?

Bisheriger Text im deutschen technischen Regelwerk bei erhöhten Erweichungspunkten Ring und Kugel:

"... Für Bindemittel mit größerem Mittelwert oder größeren Einzelwerten kann die Eignung durch gesonderten Nachweis im Rahmen der Erstprüfung des unter Einsatz dieses Asphaltgranulates herzustellenden Asphaltmischgutes erbracht werden."



- Optimale Zugabemengen (Rejuvenator und Asphaltgranulat)
- Funktionale rheologische Wirksamkeit des Bindemittelkonzeptes
- Homogenisierbarkeit bei der Asphaltherstellung, Wirksamkeit des Asphaltkonzeptes
- Alterungsverhalten (Kurz- und Langzeit); Endloszyklen?
- Alterungsverhalten; Konzepte für "nicht rejuvenierbare" Asphaltgranulate

Wiederverwendung ohne Nutzungsdauerverlust

